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ABSTRACT

 

We present a novel single-chip smart chemical
microsensor system fabricated using industrial
CMOS technology and post-CMOS micro machin-
ing. It combines three different micromachined
transducers (mass-sensitive, capacitive, and calori-
metric) all of which rely on polymeric coatings as
sensitive layers to detect airborne volatile organic
compounds (VOC). A temperature sensor is
included to account for the strong temperature
dependence of volatile absorption in polymers. Inte-
gration of microelectronics and micromechanical
components on the same chip allows for controlling
of the sensor functions, and enables on-chip signal
conditioning that drastically improves the sensor
performance. The circuitry includes biasing, ampli-
fication, and a serial interface to transmit data to
off-chip recording units. The chip forms an integral
part of a handheld chemical sensor unit to discrimi-
nate and quantify VOC’s.

 

INTRODUCTION

 

Two major trends govern current chemical gas sen-
sor research: (a) the search for highly selective
(bio)chemical layer materials, and (b) the use of
arrays of different partially selective sensors with
subsequent pattern recognition and multi-compo-
nent analysis [1]. The chip developed in this work
comprises three transducers that respond to funda-
mentally different analyte properties. The first
transducer responds to the mass of the absorbed
analyte, the second to the heat of absorption and the
third responds to a combination of the dielectric
properties of the analyte and the swelling of the
polymer. Arrays of identical chips coated with dif-
ferent partially selective polymer layers enable the
quantitative and qualitative analysis of gas mixtures
in real-time. The cointegration of signal-condition-

ing circuitry together with the sensors in CMOS-
MEMS technology is ideally suited to realize such
multisensor systems due to features such as a mini-
mum number of connections, arrays of sensors on a
single three wire bus, direct read-out by any micro-
controller via this serial bus-interface, self-test func-
tions, and power-management capabilities. The
miniaturization of the system reduces the volume of
the measurement chamber and therefore decreases
the response time of the system.    

 

MULTISENSOR SYSTEM

 

Fig. 1 shows a block diagram of the chip. The mass-
change is recorded as a resonance frequency change
of a polymer-coated silicon cantilever made from
the n-well of the CMOS process [2]. Polysilicon
resistors are used to thermally excite the cantilever
making use of the bimorph effect due to the layer-

 

Figure 1:

 

Schematic of the overall microsystem archi-
tecture comprising sensors, biasing and
signal conditioning circuitry, analog/digital
converters, sensor control and power man-
agement unit, and a digital interface.
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sandwich of silicon and the dielectric layers. A
piezoresistive Wheatstone-bridge made from dif-
fused resistors detects the vibrations. This way, the
cantilever can be used as the frequency determining
element of an oscillation circuit. The change in res-
onance frequency is then assessed using an on-chip
counter.
The dielectric properties are measured by monitor-
ing the capacitance change of a polymer-coated
interdigitated capacitor upon volatile absorption in
the polymer. The capacitance change can be posi-
tive or negative according to the difference between
the dielectric constants of analyte and polymer. A
second-order switched capacitor 

 

Σ∆

 

-modulator is
used to convert the difference between the sensing
capacitor and an insensitive reference into a digital
bitstream by incorporating them both into the input
stage of a second-order switched capacitor 

 

Σ∆

 

-mod-
ulator. This bitstream is then decimated by a
counter. 
The calorimetric sensor detects enthalpy changes
upon absorption (heat of condensation) or desorp-
tion (heat of vaporization) of analyte molecules in
the polymer. The enthalpy changes result in temper-
ature changes on a thermally insulated n-well
island. An array of 256 polysilicon/aluminum ther-
mocouples is used to measure the resulting tempera-
ture difference between the suspended membrane
and the bulk silicon chip. The difference between
the signals of a polymer-coated membrane and an
uncoated reference membrane is first amplified by a
low-noise chopper amplifier with a programmable
gain of up to 8000. An overall resolution of 13 bits
is obtained after A/D-conversion and decimation fil-
ter. 

The temperature sensor is based on the fact that the
difference between the base-emitter voltage of two
bipolar transistors is proportional to absolute tem-
perature (PTAT). In a standard CMOS process, two
bipolar transistors are available: A vertical pnp-tran-
sistor with the collector tied to ground and a lateral
pnp-transistor using a polysilicon gate to create two
p-diffusions with a small separation inside an n-
well. The vertical transistor was chosen in this
design because it has less parasitic effects and better
reproducibility. The temperature of the chip does
not need to be recorded at a high rate. Therefore, the
A/D-converter and decimation filter is shared with
the calorimetric sensor in order to save area.
The on-chip circuitry includes a serial interface
(I

 

2

 

C, [3]) to transmit the digital values to an off-chip
data port. Up to sixteen chips can be simultaneously
connected to the I

 

2

 

C-bus. Furthermore a digital con-
troller for power management, timing of the data
transmission, and setting of the calibration parame-
ters was included on the chip.

 

FABRICATION AND PACKAGING

 

The circuitry and the basic sensor elements (thermo-
couples, heating resistors, piezoresistive Wheat-
stone-bridge, etc.) are fabricated in an industrial
0.8 

 

µ

 

m CMOS-technology provided by austriami-
crosystems, Austria. The pad-etch of the CMOS
process can be used to remove the passivation on
top of the capacitive sensor. Finally the wafers are
thinned to a thickness of 380 

 

µ

 

m and a silicon-
nitride layer that serves as a mask for the subsequent
etching is deposited on the backside. After comple-
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Figure 2: Ceramic substrate with six multisensor chips and close-up view of a single chip.

0-7803-7185-2/02/$10.00 ©2002 IEEE 245



 

tion of the industrial CMOS process sequence, the
n-well-membrane for the mass-sensitive device and
the thermally insulated island structure for the calo-
rimetric sensor are released simultaneously (see
Fig. 3c). This is done by anisotropic silicon etching

with KOH from the back of the wafer with an elec-
trochemical etch stop technique that stops at the n-
well of the CMOS process. Next, the silicon cantile-
ver is released by two subsequent Reactive Ion
Etching (RIE) steps as shown in Fig. 3c. The wafers
are then diced using a protective foil on the front-
side to protect the microstructures. After exposure
with UV-light, the foil has no adhesion to the silicon
microstructures and can be removed without dam-
age. Three masks are needed for the silicon-micro-
machining, one for the KOH-etching and two for
the release of the cantilevers.
Two different packaging methods for the gas sensor
system were developed. The first method is a chip-
on-board solution where six identical chips (5 x 7
mm) are die-attached on a common ceramic sub-
strate (see Fig. 2). Electrical interconnects are made
by wire bonding. The wire bonds and the circuitry
are protected with a glob top. Finally, the sensing
structures of each chip are spray-coated with a dif-
ferent polymer using a shadow mask. 

Alternatively, a flip-chip packaging scheme for the
chemical sensors on the ceramic substrate has been
developed (see Fig. 4). Laser cutting is used to open
a window for the sensors in the ceramic substrate.
Then, the electric connections are screen-printed on
the ceramic. A soft solder paste is applied to the
ceramic using stencil printing. Before dicing the
wafers, the metallic frame surrounding the sensors
and the pads are covered with nickel/gold bumps.
Then a glass wafer is bonded to the backside of the
wafer to prevent gas-flow through the opening of
the cantilever. After dicing, six chips are flip-chip
mounted on the ceramic substrate and a reflow at

interface
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n-diffusion

metall
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c) Two RIE steps are necessary to release the
cantilever: One to remove the remaining
dielectric layers and a second to etch through
the n-well 

b) KOH etching from the backside with electro-
chemical etchstop at the n-well of the CMOS
process 

a) CMOS wafer thinned to 380 µm with silicon-
nitride layer on the backside

d) legend

Figure 3: Post-CMOS processing sequence for the
multisensor system.

 

Figure 4:

 

Schematic of flip-chip packaging.
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230°C is performed. Finally, an epoxy-based under-
fill is applied and cured at 160°C. The sensors are
then coated with different polymers using a drop-
coating method developed at the University of
Tübingen.
The advantage of the packaging with glob top pro-
tection is its simplicity. The flip-chip packaging
reduces the volume of the gas flow system, isolates
the circuitry from the gas-flow, and provide a better
reliability.

 

MEASUREMENTS

 

The system has been characterized in a computer-
controlled flow-setup by periodically switching
between analyte-loaded and pure air. The data were
recorded and analyzed using a microcontroller
board. Fig. 5 shows measurement results of a chip
coated with Polyetherurethane (PEUT) upon expo-
sure to 1200 and 3000 ppm of ethanol and 1000 and
3000 ppm of toluene. The sensor responses pro-
vided by the different transducers are sufficiently
diverse to allow for reliable analyte identification or
quantification. Together with a miniaturized flow
unit the system has been assembled into a handheld
chemical sensor unit. Using the hand-held unit, we
have successfully performed recognition of various
solvents as it is required for workplace-safety appli-
cations. 
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Figure 5: Sensor signals simultaneously recorded from all three polymer-coated transducers upon exposure
to 1200 and 3000 ppm of ethanol and 1000 and 3000 ppm of toluene at 301 K: (a) frequency shifts
(Sigma-Delta converter output) of the capacitor, (b) frequency shifts of the resonating cantilever,
and (c) thermovoltage transients of the calorimetric sensor. The close-up shows the development of
the calorimetric transient within 6s.
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